F

00000EC467121902

Pages: 2

Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh semester B.Tech examinations (S), September 2020

Course Code: EC467 Course Name: PATTERN RECOGNITION

Max. Marks: 100 **Duration: 3 Hours**

		PART A	
		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Explain the design cycle of a pattern recognition system.	(5)
	b)	Prove that a Bayes classifier is equivalent to a minimum distance classifier,	(10)
		assuming that the feature vector is Gaussian.	
2	a)	Compare supervised, unsupervised and reinforcement learning techniques.	(6)
	b)	Explain the principal component analysis for dimensionality reduction.	(9)
3	a)	Explain Hidden Markov model and its role in the classifier design.	(10)
	b)	What is meant by the curse of dimensionality?	(5)
		PART B	
		Answer any two full questions, each carries 15 marks.	
4	a)	Explain the Parzen window method for density estimation.	(9)
	b)	What is pruning in decision tree construction? Explain its significance.	(6)
5	a)	Explain the Perceptron algorithm.	(10)
	b)	Explain the nonparametric methods for density estimation.	(5)
6	a)	Formulate SVM as an optimization problem. How support vector machines can	(10)
		be used for classification of data which are not linearly separable?	
	b)	Illustrate the concept of a decision tree with the help of an example.	(5)
		PART C	
7	a)	Answer any two full questions, each carries 20 marks. Explain the boosting approach in classifier ensembles. Give details of Adaboost	(10)

- algorithm.
 - b) What is X-OR problem in classification? With a neat diagram explain the (10)solution of XOR problem.

00000EC467121902

- 8 a) Explain artificial neural networks and its parameter optimisation techniques. (10)
 - b) Define the criterion functions used in clustering. (10)
- 9 a) Differentiate between agglomerative and divisive clustering techniques. (10)
 - b) Apply K-means clustering algorithm on given data for K=3. Use $C_1(2)$, $C_2(16)$, (10) $C_3(38)$ as initial cluster centres.

Data: 2,4,6,3,31,12,15,16,38,35,14,21,23,25,30.
